On Alltop functions

Fuad Hamidli, Ferruh Özbudak

Middle East Technical University
July 7, 2017

OUTLINE

(1) Introduction and basic definitions
(2) Alltop Functions

- results by Hall,Rao, Donovan-2012
- results by Hall,Rao, Gagola-2013
(3) Classification
- Over $\mathbb{F}_{q^{2}}$
- Over $\mathbb{F}_{q^{3}}$

4 p-ary Alltop Functions

(9) Introduction and basic definitions

(2) Alltop Functions

- results by Hall,Rao, Donovan-2012
- results by Hall,Rao, Gagola-2013
(3) Classification
- Over $\mathbb{F}_{q^{2}}$
- Over $\mathbb{F}_{q^{3}}$

4 p-ary Alltop Functions

Definition

Let p be an odd prime and $\mathbf{F}=\mathbb{F}_{p^{n}}$. Derivative of a function f at a point $a \in \mathbf{F}$ is defined as

$$
D_{a} f(x)=f(x+a)-f(x)
$$

$f: \mathbf{F} \rightarrow \mathbf{F}$ is called a planar function or perfectly nonlinear (PN) if for each $a \neq 0$,

$$
D_{a} f(x)
$$

is bijective.

Definition

Two functions $f, g: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p^{n}}$ are EA-equivalent (extended affine) if there are two linearized permutation polynomials L_{1} and L_{2} and an affine polynomial L_{3} such that

$$
g=L_{1} \circ f \circ L_{2}+L_{3}
$$

which defines an equivalence relation.

Definition

A Dembowski-Ostrom polynomial (quadratic polynomial) is a polynomial $f(x) \in \mathbb{F}_{p^{n}}[x]$ with the shape

$$
f(x)=\sum_{i, j=0}^{n-1} a_{i j} x^{p^{i}+p^{j}}
$$

with $a_{i j} \in \mathbb{F}_{p^{n}}$

Introduction and basic definitions

(2) Alltop Functions

- results by Hall,Rao, Donovan-2012
- results by Hall,Rao, Gagola-2013
(3) Classification
- Over $\mathbb{F}_{q^{2}}$
- Over $\mathbb{F}_{q^{3}}$

4 p-ary Alltop Functions

Alltop Functions

Definition

Let p be an odd prime. A function $f: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p^{n}}$ is called an Alltop function if $D_{a} f(x)=f(x+a)-f(x)$ is planar for all $a \in \mathbb{F}_{p^{n}}^{*}$ Equivalently, $f(x)$ is an Alltop function if
$D_{b} D_{a} f(x)=f(x+a+b)-f(x+a)-f(x+b)+f(x)$ is permutation for all $a, b \in \mathbb{F}_{p^{n}}^{*}$

Example

x^{3} is an Alltop function over $\mathbb{F}_{p^{n}}$ for an odd prime $p>3, n \geq 1$.
This was the only known one up to 2013.

Theorem

There are no Alltop type polynomials over \mathbb{F}_{3}. (Hall, Rao, Donovan, 2012)

Theorem

(New result by Hall, Rao, Gagola, 2013) Let $p \geq 5$ be an odd prime and n an integer such that 3 does not divide $p^{n}+1$. Then $f(x)=x^{p^{n}+2}$ is an Alltop polynomial on $\mathbb{F}_{p^{2 n}}$.

(1)
 Introduction and basic definitions

(2) Allop Functions

- results by Hall,Rao, Donovan-2012
- results by Hall,Rao, Gagola-2013
(3) Classification
- Over $\mathbb{F}_{q^{2}}$
- Over $\mathbb{F}_{q^{3}}$
(4) p-ary Alltop Functions

Over $\mathbb{F}_{q^{2}}$

Let $q=p^{n}$, for p prime, n positive integer. All inequivalent cubic q-monomials over $\mathbb{F}_{q^{2}}$:

- x^{3} - Alltop in everywhere (Alltop, 1980)
- x^{q+2} - Alltop if and only if 3 does not divide $q+1$ (2013, Hall, Rao, Gagola)

Over $\mathbb{F}_{q^{2}}$

All inequivalent cubic q-binomials over $\mathbb{F}_{q^{2}}$:

- 1) $x^{3}+c x^{3 q}$ - Alltop if and only if c is not $q-1$ power
- 2) $x^{q+2}+c x^{2 q+1}$ - Alltop if and only if c is not a $q-1$ power and 3 does not divide $q+1$
- 3) $x^{3}+c x^{2 q+1}$:(MAGMA Calculations)

Alltop when $q=5$ and $\mathrm{c}=2, \omega^{14}, \omega^{22}$ (Equivalent to x^{3} in all cases)
Alltop when $q=7$ and $\mathrm{c}=\omega^{2}, \omega^{6}, \omega^{14}, \omega^{18}, \omega^{26}, \omega^{30}, \omega^{38}$,
ω^{42} (Equivalent to either x^{3} or x^{7+2})

- 4) $x^{3}+c x^{q+2}$.

Not Alltop when $q=5,7,11,13$ (MAGMA calculations)

Over $\mathbb{F}_{q^{2}}$

Theorem: Let $f(x)=x^{3}+u x^{2 q+1}$ from $\mathbb{F}_{q^{2}}$ to itself, where $u \in \mathbb{F}_{q^{2}}^{*}$ and let ω be a cyclic generator of a field $\mathbb{F}_{q^{2}}$.
a) there exist maps $L_{1}(x)=a x+b x^{q}$ and $L_{2}(x)=c x+d x^{q}$ in $\mathbb{F}_{q^{2}}$ such that $L_{1} \circ x^{3} \circ L_{2}=f(x)$ if and only if $u=3 \omega^{k(1-q)}$ for any odd integer $k \in[1,2,3, \ldots, q+1]$
b) there exist maps $L_{1}(x)=a x+b x^{q}$ and $L_{2}(x)=c x+d x^{q}$ in $\mathbb{F}_{q^{2}}$ such that $L_{1} \circ x^{q+2} \circ L_{2}=f(x)$ if and only if $u=\omega^{k(1-q)}$ for any odd integer $k \in[1,2,3, \ldots, q+1]$

Over $\mathbb{F}_{q^{2}}$

Corollary: Let $f(x)=x^{3}+u x^{2 q+1}$ from $\mathbb{F}_{q^{2}}$ to itself, where $u \in \mathbb{F}_{q^{2}}^{*}$ and let ω be a cyclic generator of a field $\mathbb{F}_{q^{2}}$.
a) if $u=3 \omega^{n(1-q)}$ for any odd integer $n \in[1,2, \ldots, q+1]$ then f is an Alltop function, which is EA-equivalent to x^{3}.
b) if $u=\omega^{n(1-q)}$ for any odd integer $n \in[1,2, \ldots, q+1]$ and 3 does not divide $q+1$, then f is an Alltop function, which is EA-equivalent to x^{q+2}.

Over $\mathbb{F}_{q^{3}}$

Theorem

Except x^{3} and its EA-equivalence class, there is no Alltop cubic q-monomials in $\mathbb{F}_{q^{3}}$.

- x^{3}
- x^{q+2}-not Alltop
- $x^{2 q+1}$-not Alltop
- $x^{q^{2}+q+1}$-not Alltop

Over $\mathbb{F}_{q^{3}}$

All inequivalent cubic q-binomials over $\mathbb{F}_{q^{3}}$:

- 1) $x^{3}+c x^{q+2}-$ Not Alltop for $q=5,7$
- 2) $x^{3}+c x^{q^{2}+2}$ - Not Alltop for $q=5,7$
- 3) $x^{3}+c x^{2 q+1}-$ Not Alltop for $q=5,7$
- 4) $x^{3}+c x^{q^{2}+q+1}$ - Not Alltop for $q=5,7$
- 5) $x^{3}+c x^{2 q^{2}+1}-$ Not Alltop for $q=5,7$

Over $\mathbb{F}_{q^{3}}$

All inequivalent cubic q-binomials over $\mathbb{F}_{q^{3}}$:

- 6) $x^{3}+c x^{3 q}$ - Alltop if and only if c is not $q-1$ power, EA-equivalent to x^{3}.
- 7) $x^{3}+c x^{q^{2}+2 q}-$ Not Alltop for $q=5,7$
- 8) $x^{3}+c x^{2 q^{2}+q}$ - Not Alltop for $q=5,7$
- 9) $x^{q+2}+c x^{q^{2}+2}$ - Not Alltop for $q=5,7$
- 10) $x^{q+2}+c x^{2 q+1}-$ Not Alltop for $q=5,7$

Over $\mathbb{F}_{q^{3}}$

All inequivalent cubic q-binomials over $\mathbb{F}_{q^{3}}$:

- 11) $x^{q+2}+c x^{q^{2}+q+1}$ - Not Alltop for $q=5,7$
- 12) $x^{q+2}+c x^{2 q^{2}+1}-$ Not Alltop for $q=5,7$
- 13) $x^{q+2}+c x^{2 q^{2}+q}$ - Not Alltop for $q=5,7$
- 14) $x^{q^{2}+2}+c x^{2 q+1}-$ Not Alltop for $q=5,7$
- 15) $x^{q^{2}+2}+c x^{q^{2}+q+1}-$ Not Alltop for $q=5,7$

(1) Introduction and basic definitions

(2) Alltop Functions

- results by Hall,Rao, Donovan-2012
- results by Hall,Rao, Gagola-2013
(3) Classification
- Over $\mathbb{F}_{q^{2}}$
- Over $\mathbb{F}_{q^{3}}$

4 p-ary Alltop Functions

p-ary Alltop Functions

Definition

1)Let p be an odd prime, $n>0$ and f be a function from $\mathbb{F}_{p^{n}}$ to \mathbb{F}_{p}. f is called p-ary bent (perfectly nonlinear) if $D_{a} f(x)=f(x+a)-f(x)$ is balanced for any $a \in \mathbb{F}_{p^{n}}^{*}$.

Definition

2)(New) f is called p-ary Alltop if $D_{a} f(x)$ is p-ary bent for any $a \in \mathbb{F}_{p^{n}}^{*}$, that is $D_{b}\left(D_{a}(f(x))\right)$ is balanced for any $a, b \in \mathbb{F}_{p^{n}}^{*}$.

Observation: $f: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p}$ is p-ary Alltop if and only if

$$
\sum_{x \in \mathbb{F}_{p^{n}}} \epsilon_{p}^{D_{b} D_{a} f(x)}=0
$$

for all $a, b \in \mathbb{F}_{p^{n}}^{*}$, where ϵ_{p} is a p-th root of unity in $\mathbb{F}_{p^{n}}$.

Characterizations of cubic p-ary Alltop functions

Let f be an arbitrary cubic function from $\mathbb{F}_{p^{n}}$ to \mathbb{F}_{p}. Then f can be written as

$$
f(x)=\operatorname{Tr}^{n}(x D(x))+\operatorname{Tr}^{n}(x A(x))+\alpha(x)
$$

where $D(x)$ is Dembowski-Ostrom polynomial, $A(x)$ is a linearized polynomial given by

$$
A(x)=\sum_{0 \leq i \leq n-1} a_{i} x^{p^{i}}
$$

with $a_{i} \in \mathbb{F}_{p^{n}}$ and $\alpha(x)$ is an affine polynomial for $x \in \mathbb{F}_{p^{n}}$.

Characterizations of cubic p-ary Alltop functions

Let $B: \mathbb{F}_{p^{n}} \times \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p}$ be the quadratic map depending on D defined as

$$
B(x, y)=D(x+y)-D(x)-D(y)
$$

for $x, y \in \mathbb{F}_{p^{n}}$. For $a, b \in \mathbb{F}_{p^{n}}$, let

$$
L_{a, b, B} f(x)=\operatorname{Tr}^{n}(x B(a, b))+\operatorname{Tr}^{n}(a B(x, b))+\operatorname{Tr}^{n}(b B(x, a))
$$

for every $x \in \mathbb{F}_{p^{n}}$.
For $a, b \in \mathbb{F}_{p^{n}}$ let $C_{a, b, d}$ and $C_{a, b, A}$ be the constant functions from $\mathbb{F}_{p^{n}}$ to \mathbb{F}_{p} defined as

$$
\begin{gathered}
C_{a, b, D}=\operatorname{Tr}^{n}(a B(a, b))+\operatorname{Tr}^{n}(b B(a, b))+\operatorname{Tr}^{n}(a D(b))+\operatorname{Tr}^{n}(b D(a)) \\
C_{a, b, A}=\operatorname{Tr}^{n}(a A(b))+\operatorname{Tr}^{n}(b A(a))
\end{gathered}
$$

Characterizations of cubic p-ary Alltop functions

Lemma (Mesnager, Özbudak, Sinak)

Let f be an arbitrary cubic function in the form $f(x)=\operatorname{Tr}^{n}(x D(x))+\operatorname{Tr}^{n}(x A(x))+\alpha(x)$. The second order derivative of f at $(a, b) \in \mathbb{F}_{p^{n}}^{2}$ is the affine function defined as

$$
D_{b} D_{a} f(x)=L_{a, b, B} f(x)+C_{a, b, D}+C_{a, b, A}
$$

for $x \in \mathbb{F}_{p^{n}}$.

Result 1: $f: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p}$ is a p-ary Alltop function if and only if

$$
\sum_{x \in \mathbb{F}_{p^{n}}} \epsilon_{p}^{L_{a, b, B} f(x)}=0
$$

Let $S=\left\{(a, b): L_{a, b, B} f(x)=0\right.$, for any $\left.x \in \mathbb{F}_{p^{n}}\right\}$
Result 2: $f: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p}$ is p-ary Allop function if and only if

$$
S=\left\{(o, y): y \in \mathbb{F}_{p^{n}}\right\} \cup\left\{(x, 0): x \in \mathbb{F}_{p^{n}}\right\}
$$

Let $f: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p}$ so that $f(x)=\operatorname{Tr}(F(x))$, where $F: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p^{n}}$ is a cubic function.

Example

1. $F(x)=x^{3}, f(x)=\operatorname{Tr}\left(x^{3}\right)$

Then $D(x)=x^{2}, B(x, y)=2 x y$ and
$L_{a, b, B} f(x)=\operatorname{Tr}(x 2 a b)+\operatorname{Tr}(a 2 b x)+\operatorname{Tr}(b 2 a x)=6 \operatorname{Tr}(a b x)$
When $p \neq 3, f$ is a p-ary Alltop function.

Example

2. $n=2, F(x)=x^{p+2}$ and $f(x)=\operatorname{Tr}\left(x^{p+2}\right)$. Then
$D(x)=x^{p+1}, B(x, y)=x y^{p}+x^{p} y$ and
$\left.L_{a, b, B} f(x)=\operatorname{Tr}\left(x\left(a^{p} b+a b^{p}\right)\right)+\operatorname{Tr}\left(a\left(x^{p} b+x b^{p}\right)\right)\right)+\operatorname{Tr}\left(b\left(a^{p} x+a x^{p}\right)\right)$
After simplifications,

$$
L_{a, b, B} f(x)=\operatorname{Tr}\left(2 x\left(a b^{p}+a^{p} b+a^{1 / p} b^{1 / p}\right)\right)
$$

f is p-ary Alltop if and only if $a y^{p}+a^{p} y+a y$ has no nonzero solution y in $\mathbb{F}_{p^{2}}$. If 3 does not divide $p+1$, then condition is satisfied and f is p-ary Allop. In this case F will be Alltop in $\mathbb{F}_{p^{2}}$.

Example

3. Let $F(x)=x^{3}+c x^{2 p+1}, f(x)=\operatorname{Tr}(F(x))$ where $c \in \mathbb{F}_{p^{n}}$ and ω is a cyclic generator of a field $\mathbb{F}_{p^{n}}$

- If $n=2, p=5, c=\omega^{13}$ then $f(x)$ is p-ary Alltop but $F(x)$ is not Alltop.
- If $n=3, p=7, c=\omega^{49}$ then $f(x)$ is p-ary Alltop but $F(x)$ is not Alltop.

Theorem

Let $F: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p^{n}}$ be any function and $f_{\alpha}: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p}$ be defined as $f_{\alpha}(x)=\operatorname{Tr}(\alpha F(x))$ for any $\alpha \in \mathbb{F}_{p^{n}}^{*}$. Then F is Alltop if and only if f_{α} is p-ary Alltop for any $\alpha \in \mathbb{F}_{p^{n}}^{*}$.

THANK YOU!

