On Alltop functions

Fuad Hamidli, Ferruh Özbudak

Middle East Technical University

July 7, 2017

イロン イボン イヨン イヨン

3

Fuad Hamidli, Ferruh Özbudak

2 Alltop Functions

- results by Hall, Rao, Donovan-2012
- results by Hall, Rao, Gagola-2013

3 Classification

- Over \mathbb{F}_{q^2}
- Over \mathbb{F}_{q^3}

ヘロト ヘ戸ト ヘヨト ヘヨト

Introduction and basic definitions

- 2 Alltop Functions
 - results by Hall, Rao, Donovan-2012
 - results by Hall, Rao, Gagola-2013

3 Classification

- Over \mathbb{F}_{q^2}
- Over \mathbb{F}_{q^3}

イロト イポト イヨト イヨト

Definition

Let *p* be an odd prime and $\mathbf{F} = \mathbb{F}_{p^n}$. Derivative of a function *f* at a point $a \in \mathbf{F}$ is defined as

$$D_a f(x) = f(x+a) - f(x)$$

 $f: \mathbf{F} \to \mathbf{F}$ is called a planar function or perfectly nonlinear (PN) if for each $a \neq 0$,

 $D_a f(x)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

is bijective.

Definition

Two functions $f, g : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ are EA-equivalent (extended affine) if there are two linearized permutation polynomials L_1 and L_2 and an affine polynomial L_3 such that

$$g=L_1\circ f\circ L_2+L_3$$

イロト イポト イヨト イヨト

э.

which defines an equivalence relation.

Definition

A Dembowski-Ostrom polynomial (quadratic polynomial) is a polynomial $f(x) \in \mathbb{F}_{p^n}[x]$ with the shape

$$f(x) = \sum_{i,j=0}^{n-1} a_{ij} x^{p^i + p^j}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

with $a_{ij} \in \mathbb{F}_{p^n}$

results by Hall,Rao, Donovan-2012 results by Hall,Rao, Gagola-2013

イロト イヨト イヨト イ

Introduction and basic definitions

2 Alltop Functions

- results by Hall, Rao, Donovan-2012
- results by Hall, Rao, Gagola-2013

3 Classification

- Over \mathbb{F}_{q^2}
- Over \mathbb{F}_{q^3}

results by Hall,Rao, Donovan-2012 results by Hall,Rao, Gagola-2013

< ロ > < 同 > < 回 > < 回 > :

Alltop Functions

Definition

Let *p* be an odd prime. A function $f : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ is called an Alltop function if $D_a f(x) = f(x+a) - f(x)$ is planar for all $a \in \mathbb{F}_{p^n}^*$ Equivalently, f(x) is an Alltop function if $D_b D_a f(x) = f(x+a+b) - f(x+a) - f(x+b) + f(x)$ is permutation for all $a, b \in \mathbb{F}_{p^n}^*$

Example

 x^3 is an Alltop function over \mathbb{F}_{p^n} for an odd prime $p > 3, n \ge 1$. This was the only known one up to 2013.

results by Hall,Rao, Donovan-2012 results by Hall,Rao, Gagola-2013

イロト 不得 とくほ とくほとう

= 990

Theorem

There are no Alltop type polynomials over \mathbb{F}_{3^n} . (Hall, Rao, Donovan, 2012)

Fuad Hamidli, Ferruh Özbudak

results by Hall,Rao, Donovan-2012 results by Hall,Rao, Gagola-2013

イロト イポト イヨト イヨト

3

Theorem

(New result by Hall, Rao, Gagola, 2013) Let $p \ge 5$ be an odd prime and n an integer such that 3 does not divide $p^n + 1$. Then $f(x) = x^{p^n+2}$ is an Alltop polynomial on $\mathbb{F}_{p^{2n}}$.

イロト イポト イヨト イヨト

Introduction and basic definitions

- 2 Alltop Functions
 - results by Hall, Rao, Donovan-2012
 - results by Hall, Rao, Gagola-2013

3 Classification

- Over \mathbb{F}_{q^2}
- Over \mathbb{F}_{q^3}

Let $q = p^n$, for p prime, n positive integer. All inequivalent cubic q-monomials over \mathbb{F}_{q^2} :

- x³- Alltop in everywhere (Alltop, 1980)
- x^{q+2}- Alltop if and only if 3 does not divide q + 1 (2013, Hall, Rao, Gagola)

イロト イポト イヨト イヨト 一臣

Over \mathbb{F}_{q^2}

All inequivalent cubic q-binomials over \mathbb{F}_{q^2} :

- 1) $x^3 + cx^{3q}$ Alltop if and only if c is not q 1 power
- 2)x^{q+2} + cx^{2q+1}- Alltop if and only if c is not a q 1 power and 3 does not divide q + 1
- 3) $x^3 + cx^{2q+1}$:(MAGMA Calculations) Alltop when q = 5 and c=2, ω^{14} , ω^{22} (Equivalent to x^3 in all cases) Alltop when q = 7 and c = ω^2 , ω^6 , ω^{14} , ω^{18} , ω^{26} , ω^{30} , ω^{38} ,

 ω^{42} (Equivalent to either x^3 or x^{7+2})

• 4) $x^3 + cx^{q+2}$: Not Alltop when q = 5, 7, 11, 13 (MAGMA calculations)

イロン 不得 とくほ とくほ とうほ

Over \mathbb{F}_{q^2}

Theorem: Let $f(x) = x^3 + ux^{2q+1}$ from \mathbb{F}_{q^2} to itself, where $u \in \mathbb{F}_{q^2}^*$ and let ω be a cyclic generator of a field \mathbb{F}_{q^2} . **a)** there exist maps $L_1(x) = ax + bx^q$ and $L_2(x) = cx + dx^q$ in \mathbb{F}_{q^2} such that $L_1 \circ x^3 \circ L_2 = f(x)$ if and only if $u = 3\omega^{k(1-q)}$ for any odd integer $k \in [1, 2, 3, ..., q + 1]$ **b)** there exist maps $L_1(x) = ax + bx^q$ and $L_2(x) = cx + dx^q$ in \mathbb{F}_{q^2} such that $L_1 \circ x^{q+2} \circ L_2 = f(x)$ if and only if $u = \omega^{k(1-q)}$ for any odd integer $k \in [1, 2, 3, ..., q + 1]$

ヘロト 人間 とくほとく ほとう

э.

Over \mathbb{F}_{q^2}

Corollary: Let $f(x) = x^3 + ux^{2q+1}$ from \mathbb{F}_{q^2} to itself, where $u \in \mathbb{F}_{q^2}^*$ and let ω be a cyclic generator of a field \mathbb{F}_{q^2} . a) if $u = 3\omega^{n(1-q)}$ for any odd integer $n \in [1, 2, ..., q+1]$ then f is an Alltop function, which is EA-equivalent to x^3 . b) if $u = \omega^{n(1-q)}$ for any odd integer $n \in [1, 2, ..., q+1]$ and 3 does not divide q + 1, then f is an Alltop function, which is EA-equivalent to x^{q+2} .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Theorem

Except x^3 and its EA-equivalence class, there is no Alltop cubic q-monomials in \mathbb{F}_{q^3} .

イロト イポト イヨト イヨト

3

- x³
- x^{q+2} -not Alltop
- x^{2q+1} -not Alltop
- x^{q^2+q+1} -not Alltop

・ロト ・聞ト ・ヨト ・ヨト

₹ 990

All inequivalent cubic q-binomials over \mathbb{F}_{q^3} :

• 1)
$$x^3 + cx^{q+2}$$
 - Not Alltop for $q = 5, 7$
• 2) $x^3 + cx^{q^2+2}$ - Not Alltop for $q = 5, 7$
• 3) $x^3 + cx^{2q+1}$ - Not Alltop for $q = 5, 7$
• 4) $x^3 + cx^{q^2+q+1}$ - Not Alltop for $q = 5, 7$
• 5) $x^3 + cx^{2q^2+1}$ - Not Alltop for $q = 5, 7$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

All inequivalent cubic q-binomials over \mathbb{F}_{q^3} :

- 6) $x^3 + cx^{3q}$ Alltop if and only if c is not q 1 power, EA-equivalent to x^3 .
- 7) $x^3 + cx^{q^2+2q}$ Not Alltop for q = 5, 7

• 8)
$$x^3 + cx^{2q^2+q}$$
 - Not Alltop for $q = 5, 7$

• 9)
$$x^{q+2} + cx^{q^2+2}$$
 - Not Alltop for $q = 5, 7$

• 10)
$$x^{q+2} + cx^{2q+1}$$
 - Not Alltop for $q = 5, 7$

All inequivalent cubic q-binomials over \mathbb{F}_{q^3} :

• 11)
$$x^{q+2} + cx^{q^2+q+1}$$
 - Not Alltop for $q = 5, 7$

• 12)
$$x^{q+2} + cx^{2q^2+1}$$
 - Not Alltop for $q = 5, 7$

• 13)
$$x^{q+2} + cx^{2q^2+q}$$
 - Not Alltop for $q = 5, 7$

• 14)
$$x^{q^2+2} + cx^{2q+1}$$
 - Not Alltop for $q = 5, 7$

• 15)
$$x^{q^2+2} + cx^{q^2+q+1}$$
 - Not Alltop for $q = 5, 7$

Introduction and basic definitions

- 2 Alltop Functions
 - results by Hall, Rao, Donovan-2012
 - results by Hall, Rao, Gagola-2013

3 Classification

- Over \mathbb{F}_{q^2}
- Over \mathbb{F}_{q^3}

イロト イポト イヨト イヨト

p-ary Alltop Functions

Definition

1)Let p be an odd prime, n > 0 and f be a function from \mathbb{F}_{p^n} to \mathbb{F}_p . f is called p-ary bent (perfectly nonlinear) if $D_a f(x) = f(x + a) - f(x)$ is balanced for any $a \in \mathbb{F}_{p^n}^*$.

Definition

2)(New) f is called p-ary Alltop if $D_a f(x)$ is p-ary bent for any $a \in \mathbb{F}_{p^n}^*$, that is $D_b(D_a(f(x)))$ is balanced for any $a, b \in \mathbb{F}_{p^n}^*$.

Observation: $f : \mathbb{F}_{p^n} \to \mathbb{F}_p$ is p-ary Alltop if and only if

$$\sum_{x\in\mathbb{F}_{p^n}}\epsilon_p^{D_bD_af(x)}=0,$$

for all $a,b\in\mathbb{F}_{p^n}^*$, where ϵ_p is a p-th root of unity in \mathbb{F}_{p^n} , where ϵ_p is a p-th root of unity in \mathbb{F}_{p^n}

Fuad Hamidli, Ferruh Özbudak

Characterizations of cubic p-ary Alltop functions

Let *f* be an arbitrary cubic function from \mathbb{F}_{p^n} to \mathbb{F}_p . Then *f* can be written as

$$f(x) = Tr^n(xD(x)) + Tr^n(xA(x)) + \alpha(x),$$

where D(x) is Dembowski-Ostrom polynomial, A(x) is a linearized polynomial given by

$$A(x) = \sum_{0 \le i \le n-1} a_i x^{p^i}$$

◆□ ▶ ◆圖 ▶ ◆ 臣 ▶ ◆ 臣 ▶

with $a_i \in \mathbb{F}_{p^n}$ and $\alpha(x)$ is an affine polynomial for $x \in \mathbb{F}_{p^n}$.

Characterizations of cubic p-ary Alltop functions

Let $B: \mathbb{F}_{p^n} \times \mathbb{F}_{p^n} \to \mathbb{F}_p$ be the quadratic map depending on D defined as

$$B(x,y) = D(x+y) - D(x) - D(y)$$

for $x, y \in \mathbb{F}_{p^n}$. For $a, b \in \mathbb{F}_{p^n}$, let

 $L_{a,b,B}f(x) = Tr^n(xB(a,b)) + Tr^n(aB(x,b)) + Tr^n(bB(x,a))$

for every $x \in \mathbb{F}_{p^n}$. For $a, b \in \mathbb{F}_{p^n}$ let $C_{a,b,d}$ and $C_{a,b,A}$ be the constant functions from \mathbb{F}_{p^n} to \mathbb{F}_p defined as

 $C_{a,b,D} = \operatorname{Tr}^{n}(aB(a,b)) + \operatorname{Tr}^{n}(bB(a,b)) + \operatorname{Tr}^{n}(aD(b)) + \operatorname{Tr}^{n}(bD(a))$ $C_{a,b,A} = \operatorname{Tr}^{n}(aA(b)) + \operatorname{Tr}^{n}(bA(a))$

Characterizations of cubic p-ary Alltop functions

Lemma (Mesnager, Özbudak, Sinak)

Let *f* be an arbitrary cubic function in the form $f(x) = Tr^n(xD(x)) + Tr^n(xA(x)) + \alpha(x)$. The second order derivative of *f* at $(a, b) \in \mathbb{F}_{D^n}^2$ is the affine function defined as

$$D_b D_a f(x) = L_{a,b,B} f(x) + C_{a,b,D} + C_{a,b,A}$$

イロト イポト イヨト イヨト

for $x \in \mathbb{F}_{p^n}$.

Result 1: $f : \mathbb{F}_{p^n} \to \mathbb{F}_p$ is a p-ary Alltop function if and only if

$$\sum_{x \in \mathbb{F}_{p^n}} \epsilon_p^{L_{a,b,B}f(x)} = 0$$

Let $S = \{(a, b) : L_{a,b,B}f(x) = 0$, for any $x \in \mathbb{F}_{p^n}\}$ **Result 2:** $f : \mathbb{F}_{p^n} \to \mathbb{F}_p$ is p-ary Alltop function if and only if

$$S = \{(o, y) : y \in \mathbb{F}_{p^n}\} \cup \{(x, 0) : x \in \mathbb{F}_{p^n}\}$$

Let $f : \mathbb{F}_{p^n} \to \mathbb{F}_p$ so that f(x) = Tr(F(x)), where $F : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ is a cubic function.

▲ロト ▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● ○ ○ ○

Example

1.
$$F(x) = x^3$$
, $f(x) = Tr(x^3)$
Then $D(x) = x^2$, $B(x, y) = 2xy$ and
 $L_{a,b,B}f(x) = Tr(x2ab) + Tr(a2bx) + Tr(b2ax) = 6Tr(abx)$
When $p \neq 3$, f is a p-ary Alltop function.

Example

2.
$$n = 2$$
, $F(x) = x^{p+2}$ and $f(x) = Tr(x^{p+2})$. Then $D(x) = x^{p+1}$, $B(x, y) = xy^p + x^p y$ and

$$L_{a,b,B}f(x) = Tr(x(a^{\rho}b+ab^{\rho})) + Tr(a(x^{\rho}b+xb^{\rho}))) + Tr(b(a^{\rho}x+ax^{\rho}))$$

After simplifications,

$$L_{a,b,B}f(x) = Tr(2x(ab^{p} + a^{p}b + a^{1/p}b^{1/p}))$$

f is p-ary Alltop if and only if $ay^p + a^py + ay$ has no nonzero solution *y* in \mathbb{F}_{p^2} . If 3 does not divide p + 1, then condition is satisfied and f is p-ary Alltop. In this case F will be Alltop in \mathbb{F}_{p^2} .

イロン イボン イヨン イヨン

Example

3. Let $F(x) = x^3 + cx^{2p+1}$, f(x) = Tr(F(x)) where $c \in \mathbb{F}_{p^n}$ and ω is a cyclic generator of a field \mathbb{F}_{p^n}

- If n = 2, p = 5, $c = \omega^{13}$ then f(x) is p-ary Alltop but F(x) is not Alltop.
- If n = 3, p = 7, $c = \omega^{49}$ then f(x) is p-ary Alltop but F(x) is not Alltop.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Theorem

Let $F : \mathbb{F}_{p^n} \to \mathbb{F}_{p^n}$ be any function and $f_{\alpha} : \mathbb{F}_{p^n} \to \mathbb{F}_p$ be defined as $f_{\alpha}(x) = Tr(\alpha F(x))$ for any $\alpha \in \mathbb{F}_{p^n}^*$. Then F is Alltop if and only if f_{α} is p-ary Alltop for any $\alpha \in \mathbb{F}_{p^n}^*$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

THANK YOU!

Fuad Hamidli, Ferruh Özbudak

・ロト ・聞ト ・ヨト ・ヨト

₹ 990